+3 LE-B SC-MATHEMATICS

- 1. If an equivalence relation R on $A = \{1,2,3,4,5\}$ partitions A as $\{1\} \cup \{2\} \cup \{3,4,5\}$ then total number of elements in R is
 - A. 3
 - B. 6
 - C. 8
 - D. 11
- 2. Let \mathbb{Z} be the set of all integers and for any integer $n > 1, H = \{0, \pm n, \pm 2n, \pm 3n, ...\}$. Then total number of left cosets of *H* in (\mathbb{Z} , +) is
 - A. 1
 - B. n
 - C. 2n
 - D. infinity

3. Total number of elements x in a integral domain D which satisfy $x^2 = x$ is

- A. 2
- B. 1
- C. 0
- D. infinity
- 4. If A and B are symmetric matrices, then which of the following is certainly symmetric?
 - A. AB
 - B. ABA
 - C. (A + B)(A B)
 - D. ABAB

5. Which of the following is true for the system: 2x - 2y + 3z + 4w = -1,

-x + y + 2z + 5w = 2, -z - 2w = 3, x - y + 2z + 3w = 0.

- A. consistent and has finite number of solutions
- B. consistent and has infinite number of solutions
- C. has unique solution.
- D. inconsistent

6. General solution of the differential equation $(x^2 - 4xy - 2y^2)dx + (y^2 - 4xy - 2x^2)dy = 0$ is

- A. $y^3 + 6xy^2 + 6x^2y + x^3 = c$
- B. $y^3 6xy^2 6x^2y + x^3 = c$
- C. $y^3 6xy^2 6x^2y x^3 = c$
- D. $y^3 6xy^2 + 6x^2y x^3 = c$
- 7. The differential equation $y \sin 2x \, dx (1 + y^2 + \cos^2 x) dy = 0$ is
 - A. exact
 - B. not exact
 - C. separable

- D. homogenous
- 8. General solution of the differential equation $\frac{d^2y}{dx^2} + 9\frac{dy}{dx} + 20y = 0$ is
- A. $y = c_1 e^{-4x} + c_2 e^{-5x}$ B. $y = c_1 e^x + c_2 e^{-x}$ C. $y = c_1 e^{-4x} + c_2 e^{5x}$ D. $y = c_1 e^x + c_2 e^{-x}$ 9. The value of $\lim_{x \to 1} \frac{2x-2}{\sqrt[3]{26+x}-3}$ is A. 1
 - B. ∞
 - C. 24
 - D. 54

10. The function $f(x) = \frac{x^3 + 1}{x + 1}$

- A. is continuous anywhere on the real line
- B. not continuous anywhere on the real line
- C. is discontinuous at x = -1 and is not a removable discontinuity
- D. has removable discontinuity at x = -1
- 11. Which of the following is an asymptote of the curve = $xe^{\frac{1}{x}}$?
 - A. y = x 1
 - B. y = x
 - C. y = x + 1
 - D. y = 2

12. The value of $\int \ln(\sqrt{1-x} + \sqrt{1+x}) dx$ is

- A. $x \ln(\sqrt{1-x} + \sqrt{1+x}) + \frac{1}{2}x + \frac{1}{2}\sin^{-1}x + c$ B. $x \ln(\sqrt{1-x} + \sqrt{1+x}) - \frac{1}{2}x + \frac{1}{2}\sin^{-1}x + c$ C. $x \ln(\sqrt{1-x} + \sqrt{1+x}) + \frac{1}{2}x - \frac{1}{2}\sin^{-1}x + c$ D. $x \ln(\sqrt{1-x} + \sqrt{1+x}) - \frac{1}{2}x - \frac{1}{2}\sin^{-1}x + c$
- 13. The area of the region bounded by the curves $y = (x 4)^2$, $y = 16 x^2$ and the x-axis is
 - A. $\frac{64}{3}$ B. $\frac{32}{3}$ C. $\frac{16}{3}$ D. $\frac{8}{3}$
- 14. The directional derivative of f = xyz at P = (-1,1,3) in the direction of the vector $\vec{a} = \hat{1} 2\hat{j} + 2\hat{k}$ is
 - A. $\frac{1}{3}$ B. $\frac{5}{3}$ C. $\frac{7}{3}$

D. $\frac{10}{3}$

15. If $v = yz\hat{i} + 3zx\hat{j} + z\hat{k}$ then curl v with respect to right handed cartesian coordinates is

- A. $3x\hat{\imath} y\hat{\jmath} + 2z\hat{k}$
- B. $-3x\hat{\imath} + y\hat{\jmath} 2z\hat{k}$
- C. $-3x\hat{\imath} + y\hat{\jmath} + 2z\hat{k}$
- D. $3x\hat{\imath} + y\hat{\jmath} + 2z\hat{k}$

16. $\lim_{x \to 0} \frac{1 - \cos x + \cos 2x}{x^2}$ is equal to A. 1 B. -1

- C. 0
- D. 2

17. If
$$f(x,y) = \begin{cases} \frac{x^2 - xy}{x + y}, & for(x,y) \neq (0,0) \\ 0, & for(x,y) = (0,0) \end{cases}$$
 then $f_y(0,0)$ is equal to
A. 1
B. 0
C. -1
D. does not exist

18. The function $xy - x^2 - y^2 - 2x - 2y$ has A. maximum at (2,2)

- B. minimum at (2,2)
- C. minimum at (-2, -2)
- D. maximum at (-2, -2)

19. Value of the beta function $B\left(\frac{1}{3}, \frac{2}{3}\right)$ is equal to

A.
$$\frac{2\pi}{\sqrt{3}}$$

B. $-\frac{2\pi}{\sqrt{3}}$
C. $\frac{\pi}{\sqrt{3}}$
D. $-\frac{\pi}{\sqrt{3}}$

20. Which of the following sequences $\{a_n\}$ diverges ?

A.
$$a_n = \left(\frac{3n+1}{3n-1}\right)^n$$

B. $a_n = \left(\frac{1}{3}\right)^n + \frac{1}{\sqrt{2^n}}$

C.
$$a_n = \frac{n!}{10^{6n}}$$

D. $a_n = \frac{3^n 6^n}{2^{-n} n!}$

21. Laplace transform of $t^2 \cos t$ is equal to

A.
$$\frac{2s^3-6s}{(s^2+1)^3}$$

B. $\frac{2s^3+6s}{(s^2+1)^3}$
C. $\frac{2s^3-6s}{(s^2-1)^3}$
D. $\frac{2s^3+6s}{(s^2-1)^3}$

22. If $L\left(\frac{d^2Y}{dt^2}\right) + L\left(\frac{dY}{dt}\right) = \frac{1}{s^2}$, where L stands for Laplace transform, then which of the following values of y is true

A.
$$y = L^{-1} \left(\frac{1}{s^2} + \frac{s+3}{s^2+1} \right)$$

B. $y = L^{-1} \left(\frac{1}{s^2} - \frac{s+3}{s^2+1} \right)$
C. $y = L^{-1} \left(\frac{1}{s^2} + \frac{s-3}{s^2+1} \right)$
D. $y = L^{-1} \left(\frac{1}{s^2} + \frac{s+3}{s^2-1} \right)$

- 23. Dimension of the vector space of all 3×3 real symmetric matrices with usual matrix addition and scalar multiplication, is
 - A. 4
 - B. 6
 - C. 9
 - D. 3

24. Inverse of the linear transformation T(x, y) = (x + y, 2x - y) is

A. $T^{-1}(u,v) = \frac{1}{3}(u-v,2u-v)$ B. $T^{-1}(u,v) = \frac{1}{3}(u-v,2u+v)$ C. $T^{-1}(u,v) = \frac{1}{3}(u+v,2u-v)$ D. $T^{-1}(u,v) = \frac{1}{3}(2u-v,u+v)$

25. Nullity of the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by T(x, y, z) = (x + y, y + z) is

- A. 2
- B. 3
- C. 0
- D. 1

26. If $\{x_n\}$ is the sequence of Secant's iterates to compute $\sqrt[3]{7}$ if then x_{n+1} is equal to

- A. $x_n x_{n-1} (x_n x_{n-1}) 7$
- B. $x_n x_{n-1} (x_n x_{n-1}) + 7$
- C. $x_n x_{n-1} (x_n + x_{n-1}) + 7$

D. $x_n x_{n-1} (x_n + x_{n-1}) - 7$

27. If $ax^2 + bx + c$ is the Lagrange polynomial which interpolates the data

$x^{a} +$	0	1	-1	
-EL)	0	1	1	

then a + b + c is equal to

A. 0 B. 1 C. 2 D. 3 28. Value of $\int_0^1 \left(\int_0^1 \frac{x-y}{(x+y)^3} dy \right) dx$ is equal to A. 1 B. 2 C. 0 D. $\frac{1}{2}$

29. Equation of the line passing through (1,2,3) and parallel to the line, which is the intersection of the planes x - y + 2z = 5, 3x + y + z = 6, is

A.
$$\frac{x-1}{-3} = \frac{y-2}{5} = \frac{z-3}{4}$$

B. $\frac{x+1}{-3} = \frac{y+2}{5} = \frac{z-3}{4}$
C. $\frac{x-1}{3} = \frac{y-2}{5} = \frac{z-3}{4}$
D. $\frac{x+1}{3} = \frac{y+2}{5} = \frac{z=3}{4}$

- 30. If the chord of hyperbola $x^2 y^2 = a^2$ touches the parabola $y^2 = 4ax$ then locus of their mid point is
 - A. $y^{2}(x + a) = x^{3}$ B. $y^{2}(a - x) = x^{3}$ C. $y^{2}(x - a) = x^{3}$ D. $x^{2}(x + a) = y^{3}$

KEY

Q.1	Q.2	Q.3	Q.4	Q.5	Q.6	Q.7	Q.8	Q.9	Q.10
D	В	А	В	D	В	А	А	D	D
Q.11	Q.12	Q.13	Q.14	Q.15	Q.16	Q.17	Q.18	Q.19	Q.20
С	В	А	С	С	В	В	D	А	С
Q.21	Q.22	Q.23	Q.24	Q.25	Q.26	Q.27	Q.28	Q.29	Q. 30
А	С	В	С	D	D	В	D	А	С